Unidad de Aprendiz	zaje: Ro	ca				
Periodo lectivo	Horas totales	Но	ras Teórica	s Horas Prácticas	Créditos	
Segundo	4		4	0	8	
Área:	Especialización			·		
Unidades de Aprendizaje Antecedentes			Unidades de Aprendizaje Consecuentes			
Ninguna			Ninguna			
Fecha de elaboración: Enero 2016			Elaboró: Dr. Juan Carlos Ávila Vilchis			
				Dra. Adriana H. Vilchi	s González	

Objetivo general: Comprender los fundamentos de los sistemas robóticos manipuladores, sus modelos matemáticos primarios y conocer los elementos que le permiten relacionarse con el medio ambiente que les rodea. Adquirir los conocimientos para sintetizar modelos dinámicos de robots manipuladores y planificar sus trayectorias y presentar un panorama de las diferentes técnicas existentes para el control de robots en diversas aplicaciones.

Contenido temático:

Unidad I Introducción

Unidad II Modelo Geométrico

Unidad III Modelo Cinemático

Unidad IV Modelo Dinámico

Unidad V Control

Actividades de aprendizaje:

- 1. Trabajos escrito de investigación teórica
- 2. Presentaciones orales
- 3. Escritura de reportes científicos
- 4. Trabajos escritos de modelado matemático de robots
- 5. Examen práctico de Robótica

Procedimiento de evaluación: Se realizará de acuerdo con el Capítulo VII del Reglamento de Estudios Avanzados. Se recomienda:

Producto de evaluación	Porcentaje
Exámenes escritos	40
Trabajo escrito y/o exposición	10
individual	
Examen práctico	50

Bibliografía

- [1] A. Barrientos, L.F. Peñín, C. Balaguer and R. Aracil, Fundamentos de Robótica. 2ª Edición, España: McGraw Hill, 2012.
- [2] F.L. Lewis, D.M. Dawson and C.T. Abdallah. Robot Manipulator Control, Theory and Practice, 2nd Edition, EEUU: Marcel Dekker, 2004.
- [3] J.J Craig, Introduction to Robotics, Mechanics and Control, 2nd Edition, Adisson Wesley, 1989M. W. Spong, S. Hutchinson and M. Vidyasagar, Robot Modeling and Control. EEUU: John Wiley & Sons, 2006.
- [4] L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manipulators, EEUU: Springer Verlag, 2003.
- [5] R, Kelly, V. Santibañez, and A. Loría. Control of Robot Manipulators in Joint Space, UK: Springer Verlag, 2005.